Bayesian semiparametric modeling for stochastic precedence, with applications in epidemiology and survival analysis.
نویسنده
چکیده
We propose a prior probability model for two distributions that are ordered according to a stochastic precedence constraint, a weaker restriction than the more commonly utilized stochastic order constraint. The modeling approach is based on structured Dirichlet process mixtures of normal distributions. Full inference for functionals of the stochastic precedence constrained mixture distributions is obtained through a Markov chain Monte Carlo posterior simulation method. A motivating application involves study of the discriminatory ability of continuous diagnostic tests in epidemiologic research. Here, stochastic precedence provides a natural restriction for the distributions of test scores corresponding to the non-infected and infected groups. Inference under the model is illustrated with data from a diagnostic test for Johne's disease in dairy cattle. We also apply the methodology to the comparison of survival distributions associated with two distinct conditions, and illustrate with analysis of data on survival time after bone marrow transplantation for treatment of leukemia.
منابع مشابه
Semiparametric Bayesian Analysis of Survival Data
This review paper investigates the potential of the semiparametric Bayes methods for the analysis of survival data. The nonparametric part of every semiparametric model is assumed to be a realization of a stochastic process. The parametric part, which may include a regression parameter or a parameter quantifying the heterogeneity of a population, is assumed to have a prior distribution with pos...
متن کاملDetermining the Prognostic Factors of Survival in Patients with Head and Neck Cancer Using Parametric Models and Cox Bayesian Model, from 2007 to 2013
Introduction: Head and neck cancer is one of the most important cancers with low survival. This study was designed to evaluate the one-year survival of patients with head and neck cancer and related demographic factors. Methods: The present study was a cross-sectional study that reviewed the records of the patients with head and neck cancer (193 patients) in 2007-2013. In this study, Kaplan-Me...
متن کاملApproaches for Semiparametric Bayesian Regression
Developing regression relationships is a primary inferential activity. We consider such relationships in the context of hierarchical models incorporating linear structure at each stage. Modern statistical work encourages less presump-tive, i.e., nonparametric speciications for at least a portion of the modeling. That is, we seek to enrich the class of standard parametric hierarchical models by ...
متن کاملBayesian Sample Size Determination for Joint Modeling of Longitudinal Measurements and Survival Data
A longitudinal study refers to collection of a response variable and possibly some explanatory variables at multiple follow-up times. In many clinical studies with longitudinal measurements, the response variable, for each patient is collected as long as an event of interest, which considered as clinical end point, occurs. Joint modeling of continuous longitudinal measurements and survival time...
متن کاملSemiparametric Bayesian approaches to joinpoint regression for population-based cancer survival data
According to the American Cancer Society report (1999), cancer surpasses heart disease as the leading cause of death in the United States of America (USA) for people of age less than 85. Thus, medical research in cancer is an important public health interest. Understanding how medical improvements are affecting cancer incidence, mortality and survival is critical for effective cancer control. I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Lifetime data analysis
دوره 17 1 شماره
صفحات -
تاریخ انتشار 2011